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Checking the Sufficiently Scattered Condition
using a Global Non-Convex Optimization Software

Nicolas Gillis, Member, IEEE, Robert Luce

Abstract—The sufficiently scattered condition (SSC) is a key
condition in the study of identifiability of various matrix factor-
ization problems, including nonnegative, minimum-volume, sym-
metric, simplex-structured, and polytopic matrix factorizations.
The SSC allows one to guarantee that the computed matrix
factorization is unique/identifiable, up to trivial ambiguities.
However, this condition is NP-hard to check in general. In this
paper, we show that it can however be checked in a reasonable
amount of time in realistic scenarios, when the factorization rank
is not too large. This is achieved by formulating the problem as a
non-convex quadratic optimization problem over a bounded set.
We use the global non-convex optimization software Gurobi, and
showcase the usefulness of this code on real-world hyperspectral
images.

Index Terms—sufficiently scattered condition, identifiabil-
ity, uniqueness, nonnegative matrix factorization, non-convex
quadratic optimization

I. INTRODUCTION

LOW-RANK matrix factorizations (LRMFs) are central
techniques in numerical linear algebra, with the singular

value decompositions (SVD) and principal component analysis
(PCA) as the most famous examples. LRMFs are widely
used in data analysis, statistics, signal processing, control,
optimization, and machine learning; see, e.g., [1], [2], [3].
Given an input matrix X ∈ Rm×n and a factorization rank r,
LRMF aims at finding W ∈ W ⊆ Rm×r and H ∈ H ⊆ Rr×n

such that X ≈ WH . The sets W and H impose constraints
on W and H , such as orthogonality in SVD and PCA, and
sparsity in sparse PCA [4]. These additional constraints allow
one to more easily interpret the factors, and are often motivated
by the application at hand.

Among LRMFs, nonnegative matrix factorization
(NMF) [5], which imposes nonnegative constraint on
the factors and assumes X is nonnegative, has become a
standard tool as well; see [6], [7], [8] and the references
therein. Nonnegativity is motivated for example by physical
considerations, e.g., in imaging, audio signal processing and
chemometrics, or by probabilistic interpretations, e.g., in
topic modeling. A key aspect in these applications is that
the factorization is unique, a.k.a. identifiable (we will use
both terms interchangeably), which allows one to recover the
groundtruth factors that generated the data (such as the sources
in blind source separation). A factorization, X = WH , is
unique/identifiable if for any other factorization, X = W ′H ′,
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there exists a permutation π of {1, 2, . . . , r} and scaling
factors {αk}rk=1 such that for all k

W ′(:, k) = αkW (:, πk) and H ′(k, :) = α−1
k H(πk, :). (1)

Unfortunately, nonnegativity is typically not enough to ensure
the uniqueness; see [9], [8]. A stronger condition that ensures
uniqueness is the sufficiently scattered condition (SSC) which
requires some degree of sparsity within the factors W and
H; see Section II for a formal definition. The uniqueness of
NMF under the SSC was presented in [10], and later lead to
numerous identifiability results for other LRMFs, namely:

• Minimum-volume NMF [11], [12] which seeks for an
NMF decomposition that minimizes the volume of the
convex full of the columns of W .

• Simplex-structured matrix factorization [13], [14] which
relaxes the constraints on W but imposes H to be
column-wise stochastic. A bounded version, where the
entries of W are bounded [15], has also been explored
and shown to be identifiable under SSC-like conditions.

• Symmetric NMF with applications in topic model-
ing [16], [17].

The SSC condition was also generalized for polytopic
matrix factorizations [18], [19] and for bounded component
analysis [20] which are generalizations of NMF where the
nonnegative orthant is replaced by polytopes. The SSC has
also been used to provide identifiability in many other contexts
where constrained matrix factorizations play a crucial role.
This has been the case in particular in machine learning
tasks, such as topic modeling [21], [17], crowd sourcing [22],
recovering joint probability [23], label-noise learning [24],
deep constrained clustering [25], dictionary learning [26], and
tensor decompositions [27].
Outline and contribution. In summary, the SSC plays a
critical role in checking whether a wide class of LRMFs
with nonnegativity constraints are identifiable. Unfortunately,
the SSC is NP-hard to check in general (see Section II for
more details). To the best of our knowledge, there currently
does not exist a solver that checks the SSC, even for small-
size problems. In this paper, we overcome this limitation by
leveraging current global non-convex quadratic optimization
software, and in particular Gurobi, to check the SSC for
relatively large matrices.

The paper is organized as follows. We first define the
SSC rigorously, in Section II, after having introduced useful
concepts in convex geometry. Then we show in Section III
how checking the SSC is equivalent to solving an non-convex
quadratic program. In Section IV, we provide an alternative
formulation with box constraints, which is crucial to using
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global non-convex quadratic optimization software. We report
numerical experiments in Section V on hyperspectral images,
showing that Gurobi can solve relatively large instances, for a
factorization rank r up to a few dozen, and input matrices of
size up to a few thousands.
Notation. Given a vector x ∈ Rr, ∥x∥2 denotes its ℓ2 norm
and x⊤ its transpose. The nonnegative orthant in dimension r
is denoted Rr

+. The vector of all ones is denoted e, and of all
zeros 0. The identity matrix is denoted I , and its ith column
is denoted ei (a.k.a. the ith unit vector). The dimensions of
e, 0, I and ei will be clear from the context. For a matrix
H , H(:, j) and H(i, :) denote its jth column and ith row,
respectively. The set {1, 2, . . . , r} is denoted [r].

II. PRELIMINARIES: CONES, THEIR DUALS AND THE SSC

Given a matrix H ∈ Rr×n, we define the cone generated by
its columns as cone(H) = {x | x = Hy, y ≥ 0}. The dual of
a cone H is defined as H∗ =

{
x | x⊤z ≥ 0 for all z ∈ H

}
.

In particular, the dual cone of cone(H) is given by

cone∗(H) =
{
x | x⊤z ≥ 0, for all z ∈ cone(H)

}
=

{
x | x⊤Hy = (H⊤x)⊤y ≥ 0, for all y ≥ 0

}
=

{
x | H⊤x ≥ 0

}
.

Another cone we will need is the following second-order cone:

C =
{
x ∈ Rr | e⊤x ≥

√
r − 1∥x∥2

}
,

which is contained in the nonnegative orthant. Its dual cone is
C∗ =

{
x ∈ Rr | e⊤x ≥ ∥x∥2

}
and contains the nonnegative

orthant (which is self-dual). An important and easy-to-check
property of duality is that H1 ⊆ H2 if and only if H∗

2 ⊆ H∗
1.

The SSC. We will use the following definition.

Definition 1 (SSC, [10]). A nonnegative matrix H ∈ Rr×n
+

satisfies the sufficiently scattered condition (SSC) if

C ⊆ cone(H), and (SSC1)

q ∈ cone∗(H) ∩
{
x | e⊤x = ∥x∥2

}
⇐⇒ q = αei for α > 0 and i ∈ [r]. (SSC2)

There actually exist several slight variations of the definition
of the SSC. All of them include the requirement (SSC1), while
the second condition is slightly modified:

• [11] requires that there does not exist any orthogonal
matrix Q such that cone(H) ⊆ cone(Q), except for per-
mutation matrices. This is a slight relaxation of (SSC2).

• [12] requires cone(H) to contain a slightly larger cone
than C, namely, Cq = {x ∈ Rr

+ | e⊤x ≥ q∥x∥2}
for any q <

√
r − 1, which is slightly more restrictive

than (SSC2).

We chose Definition 1 because it is slightly simpler to
present; however, our formulations can be adapted to handle
the other definitions above.

III. CHECKING THE SSC

Before checking the SSC, it will be useful to check whether
a simple necessary condition holds. The cone C contains the
points e − ei for i ∈ [r] at its border, since e⊤(e − ei) =√
r − 1∥e−ei∥2 = r−1, and hence T = cone

(
ee⊤−I

)
⊂ C.

This implies the following necessary condition [8, p.119].

Definition 2 (Necessary Condition for the SSC, NC-SSC). The
matrix H ∈ Rr×n

+ satisfies the NC-SSC if T = cone
(
ee⊤ − I

)
⊂ cone(H), that is, e− ei ∈ cone(H) for i ∈ [r].

The NC-SSC can be easily checked, in polynomial time, by
solving systems of linear inequalities: for all i ∈ [r], check that
there exists y ≥ 0 such that e−ei = Hy. In the remainder, we
will assume that this necessary condition has been checked,
that is, T ⊂ cone(H), otherwise H cannot satisfy the SSC.

Note that the NC-SSC (and hence the SSC) require a certain
degree of sparsity of H , since its cone must contain the vectors
{e − ei}ri=1 that contain a zero entry. In fact, one can show
that a necessary condition for the SSC to hold is that H has
at least r − 1 zeros per row [10], [9], [8].
Checking the SSC via non-convex quadratic optimiza-
tion. The first condition of the SSC (SSC1) is equivalent to
cone∗(H) ⊆ C∗. This condition is not satisfied if there exists
x ∈ cone∗(H) while x /∈ C∗, that is, if there exists x such
that

H⊤x ≥ 0 and e⊤x < ∥x∥2. (2)

These conditions remain valid when x is multiplied by any
positive constant. Moreover, we have the following lemma.

Lemma 1. Let H ∈ Rr×n
+ satisfy the NC-SSC. Then for any

x ̸= 0 satisfying H⊤x ≥ 0, we have e⊤x > 0.

Proof. Since H satisfies the NC-SSC, T ⊂ cone(H), and
hence cone∗(H) ⊂ T ∗ =

{
x ∈ Rr | (ee⊤ − I)x ≥ 0

}
.

Summing the inequalities defining T ∗, we obtain

e⊤(ee⊤ − I)x = (r − 1)e⊤x ≥ 0.

(For r = 1, the result is trivial since H ̸= 0.) It therefore
remains to show that, for x ∈ T ∗, e⊤x = 0 if and only if
x = 0. In fact, e⊤x = 0 implies that all inequalities defining
T ∗ must be active at x, otherwise their sum is positive and we
would get e⊤x > 0, a contradiction. Hence (ee⊤ − I)x = 0
implying x = 0 since ee⊤ − I is full rank.

Now, going back to (2), we have the following corollary.

Corollary 1. Let H ∈ Rr×n
+ satisfy the NC-SSC. Then (SSC1)

is not satisfied if and only if the system

H⊤x ≥ 0 and e⊤x = 1 < ∥x∥2 (3)

has a solution.

Proof. Since x = 0 does not satisfy e⊤x < ∥x∥2, we can
assume w.l.o.g., by Lemma 1, that e⊤x > 0, and hence, using
the scaling degree of freedom, that e⊤x = 1.
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Checking whether (3) has a solution for H satisfying the
NC-SSC can be done by solving the following optimization
problem:

p∗ = max
x

∥x∥2 such that e⊤x = 1 and H⊤x ≥ 0.

(4)
If p∗ > 1, then H does not satisfy (SSC1). Otherwise,
p∗ = 1, and to check whether H satisfies the SSC, we need
to check the second condition (SSC2), that is, whether there
exists q ̸= ei for all i such that e⊤q = ∥q∥2 and H⊤q ≥ 0.

In summary, H satisfies the SSC if and only if (i) H satisfies
the NC-SSC, and (ii) the only optimal solutions of (4) are ei
for i ∈ [r], with optimal value p∗ = 1. This is why it is
NP-hard to check the SSC, because (4) is the maximization
of a convex function over a polytope which is NP-hard in
general [28], [10].

IV. SOLVING (4) WITH GLOBAL NON-CONVEX
QUADRATIC OPTIMIZATION

The problem (4) cannot directly be handled by global non-
convex quadratic optimization solvers, such as Gurobi, because
such solvers require a bounded feasible set, with lower and
upper bounds on the variables. This allows them to use the
McCormick envelopes [29], and rely on branch-and-bound
strategies. In a few words, the idea is as follows: for every
product of two variables that appears in the objective or in the
constraints, say the product of the variables x and y, a new
variable is introduced, z = xy. Given that x and y belong to
a bounded box, that is, x ∈ [x, x̄] and y ∈ [y, ȳ], the equality
z = xy is approximated from above and below with linear
constraints as follows:

z ≤ yx+ x̄y − x̄y,z ≤ ȳx+ xy − xȳ,

z ≥ yx+ xy − xy,z ≥ ȳx+ x̄y − x̄ȳ.

Figure 1 provides an illustration of such a McCormick enve-
lope. This McCormick linearization is then improved along

Fig. 1. Illustration of the McCormick envelope for the nonlinear constraint
xy = 6, with x ∈ [2, 6] and y ∈ [1, 3]. (Note that, in this example, the last
two inequalities, defining the upper bound, coincide.)

the algorithm by splitting the feasible set in smaller and
smaller intervals for each variable, following branch-and-
bound strategies; see, e.g., [30] and the references therein.

Let us now show how any feasible solution x of (4) can be
bounded.

Lemma 2. Let H ∈ Rr×n
+ satisfy the NC-SSC. Then the

entries of any feasible solution x of (4) satisfy xi ∈ [2− r, 1]
for all i.

Proof. Since cone(ee⊤ − I) ∈ cone(H) for i ∈ [r], we have
(ee⊤ − I)x = e − x ≥ 0 and hence x ≤ e. Since e⊤x = 1
and x ≤ e, we have xi = 1−

∑
j ̸=i xj ≥ 1− (r− 1) = 2− r

for all i.

Note that the lower bound in Lemma 2, 2 − r, can be
achieved: this is the case for H = (ee⊤−I) for which one can
check that optimal solutions of (4) are given by e+ (1− r)ei
for i ∈ [r].
Tightening the lower bound. When it comes to checking the
SSC, we now show that we can actually tighten the constraint
xi ≥ 2−r to xi ≥ −1. The reason is that we are not interested
in the exact optimal value of (4), but only to know whether it
is larger than one.

Lemma 3. Let H ∈ Rr×n
+ satisfy the NC-SSC. Then the

optimal value of (4) is equal to one, that is, p∗ = 1, if and
only of the optimal value

q∗ = max
x

∥x∥2 s.t. e⊤x = 1, H⊤x ≥ 0,−1 ≤ xi ≤ 1 i ∈ [r]

(5)
is equal to one.

Proof. For r ≤ 3, Lemma 2 provides the result, since xi ≥
2−r ≥ −1 for i ∈ [r]. It remains to prove the result for r ≥ 4.

We have p∗ ≥ q∗ since (4) is a relaxation of (5), and that
q∗ ≥ 1 since x = ei for all i are feasible solutions with
objective equal to one1. It remains to show that p∗ > 1 implies
q∗ > 1. Let x∗ be an optimal solution of (4) with p∗ > 1. By
Lemma 2, x∗ ≤ e. If x∗

i ≥ −1 for all i, we are done since x∗ is
feasible for (5) and q∗ = p∗ > 1. Otherwise assume x∗

i < −1
for some i. Let us consider the solution y = λx∗ + (1− λ)ei
for some λ ∈ [0, 1] (to be chosen below). By convexity of
the feasible set, y is feasible for (4). Let us take λ such that
yi = −1, that is,

λ =
2

1− x∗
i

∈
[

2

r − 1
, 1

)
,

so that λ ∈ (0, 1) since 2 − r ≤ x∗
i < −1 (Lemma 2) and

r ≥ 4. The new solution y satisfies yi = −1, while the other
entries of y are equal to that of x∗ multiplied by λ ∈ (0, 1),
and hence their absolute value gets smaller. However, we have
∥y∥2 > 1 since yi = −1 while e⊤y = 1. (In fact2, we have
∥y∥22 > 1 + 1

r−1 .) Hence, we have constructed a feasible
solution y of (4) such that yi = −1 while ∥y∥2 > 1. For any
other entry of y smaller than −1, we can apply the same trick
as for x∗, and we will eventually get a feasible solution of (5)
with at least one entry equal to −1, and hence an objective
function value strictly larger than 1.

1Note that it is possible that 1 < q∗ < p∗, and we have some numerical
examples.

2This follows from the inequalities
√
r − 1

√∑
j ̸=i |yj |2 ≥

∑
j ̸=i |yj | ≥∑

j ̸=i yj > 1 which implies
∑

j ̸=i |yj |2 > 1
r−1

.
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In summary, we have the following theorem.

Theorem 1. The matrix H ∈ Rr×n
+ satisfies the SSC if and

only if the following two conditions are satisfied
1) The matrix H satisfies the NC-SSC, that is, e − ei ∈

cone(H) for all i ∈ [r].
2) The optimal value of (5) is equal to q∗ = 1, and the set

of optimal solutions is {ei}ri=1.

Proof. This follows from Corollary 1 and Lemma 3.

Gurobi: more than one solution, and early stopping. To
check the SSC, we therefore have to check the NC-SSC,
and then solve (5). If the optimal value is equal to one, we
need to check whether there exist optimal solutions different
from the r solutions which are the unit vectors, {ei}ri=1.
To solve (5), we rely on the global non-convex optimization
software Gurobi3. It allows one to generate more than one
solution, and we require Gurobi to provide at least r + 1 so-
lutions4 (to have at least one solution different from {ei}ri=1).

Moreover, since we only care about checking whether the
optimal value of (5) is larger than one, we can stop Gurobi
as soon as the best found solution has objective strictly larger
than 1, and we use the parameter: params.BestObjStop
= 1.0001. This stopping criterion is key, as it allows Gurobi
to stop very early for matrices far from satisfying the SSC.

Finally, we do not know in advance how long it will take
for Gurobi to solve (5), and hence it is useful to use a
timelimit (e.g., 5 minutes). If Gurobi cannot finish within
5 minutes, it means it was not able to find a solution with
objective larger than 1. Hence, on top of the NC-SSC being
satisfied (this is the first step of the algorithm), there has
been additional necessary conditions satisfied, that is, all nodes
explored within the branch-and-bound strategy do not violate
the system (3). Hence although we cannot guarantee the SSC,
the chances for the SSC to be satisfied are higher.

Finally, our algorithm to check the SSC, based on Theo-
rem 1, is the first to check the SSC, up to machine precision.

V. NUMERICAL EXPERIMENTS

In [9], authors use a heuristic to solve (4), while, in [8,
Chapter 4.2.3.6], the author relied on the necessary condition
that the vectors {e − ei}ri=1 belong to the relative interior of
cone(H). For the first time, we will provide results where the
SSC is checked exactly on real hyperspectral images factorized
with minimum-volume NMF.

The supplementary material [31] contains a details analysis
for synthetic data. In a nutshell, the SSC can be checked very
fast for r ≤ 10 and n = 10r, in less than 6.3 seconds in
all cases. When r increases, the computational time increases.
For example, the time limit of 5 minutes is often reached
when r = 20, n = 10r and H is close to the phase transition
between satisfying the SSC and not satisfying it.

All experiments are performed with a 12th Gen Intel(R)
Core(TM) i9-12900H 2.50 GHz, 32GB RAM, on MATLAB
R2019b. The code and data sets are available on https://gitlab.
com/ngillis/check-ssc, also available in Python and Julia.

3https://www.gurobi.com/solutions/gurobi-optimizer/
4params.PoolSearchMode=2; params.PoolSolutions=r+1.

Given a matrix X = W#H#, where H# satisfies the
SSC, (W#, H#) can be identified by solving the following
minimum-volume (min-vol) NMF problem [32]:

min
W,H≥0

det(W⊤W ) s.t. X = WH, and W⊤e = e. (6)

In practice, one has to balance the data fitting term, that is,
∥X−WH∥2F , and the volume regularization5, logdet(W⊤W ),
by solving, for some penalty parameter λ > 0,

min
W≥0,W⊤e=e,H≥0

∥X −WH∥2F + λ logdet(W⊤W ). (7)

We applied this model on 5 widely-used hyperspectral im-
ages6: the (i, j)th entry of matrix X ∈ Rm×n contains the
reflectance of the jth pixel at the ith wavelength. Each column
of X is the spectral signature of a pixel, and each row a
vectorized image at a given wavelength. Performing NMF on
such a matrix allows one to extract the spectral signatures of
the pure materials (called endmembers) as the columns of W ,
and their abundances in each pixel as the rows of H; see,
e.g., [35]. We solve (7) with7 the function minvolNMF.m,
with the same parameters as in [8]. Table I reports the results.
The supplementary material contains a link to the abundance
maps of these solutions, illustrating the meaningful results
obtained by min-vol NMF. In all cases, the SSC of the matrix

TABLE I
GIVEN A MIN-VOL NMF (W,H) OBTAINED BY SOLVING (7), THIS TABLE
REPORTS THE SPARSITY OF H (THAT IS, PERCENTAGE OF ZERO ENTRIES,
SPAR(H )), WHETHER THE NC-SSC (DENOTED NC) AND THE SSC ARE

SATISFIED, AND THE TIME THAT IT TOOK TO CHECK THE SSC WITH
GUROBI.

Data set m n r spar(H) NC SSC time (s.)
Samson 156 95× 95 3 40% no no 0.0
Terrain 166 500× 307 4 40% yes no 2
Jasper 188 100× 100 4 45% yes yes 0.5
Urban 162 307× 307 6 50% yes yes 9

San Diego 158 400× 400 7 53% yes yes 14

H could be checked within 15 s. The Terrain data set is
interesting because it satisfies the NC-SSC, but not the SSC.

To the best of our knowledge, this is the first time the
identifiability of the NMF of real-world hyperspectral images
is guaranteed. More precisely, the solution (W ∗, H∗) obtained
by solving (7) on the noisy X is the unique solution of (6)
when factorizing X∗ = W ∗H∗. Further research on noisy
minimum-volume NMF is necessary to guarantee directly the
uniqueness of the solution of (7).

VI. CONCLUSION

In this paper, we have provided a formulation, (5), suitable
to check the SSC with non-convex quadratic optimization
solvers (see Theorem 1), and we used Gurobi. This allows
one to check, a posteriori, whether the solutions to various
matrix factorization problems with nonnegativity constraints
are essentially unique. We illustrated the use of our algorithm
on the uniqueness of min-vol NMF for hyperspectral images.

5The regularizer logdet(W⊤W ) has been shown to perform better than
det(W⊤W ) in practice [33] .

6See http://lesun.weebly.com/hyperspectral-data-set.html and [34] from
which we chose the values of r.

7Available from https://gitlab.com/ngillis/nmfbook/
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Supplementary Material: Checking the SSC
Synthetic Data Examples

Nicolas Gillis, Member, IEEE, Robert Luce

As explained in Section II of the paper, for a matrix to
satisfy the SSC, it requires a certain degree of sparsity. Let
us generate matrices H ∈ Rr×n

+ whose columns are k-sparse,
that is, they have k non-zero entries for 1 ≤ k ≤ r − 1.
The position of the k non-zero entries are picked uniformly
at random, while the k non-zero values are picked using the
uniform distribution in the probability simplex of dimension k,
via the Dirichlet distribution with all parameters equal to one.
We will use two values of n: 5r and 10r. Figure 1 displays
the number of times, over 20 runs, the SSC was satisfied for
k-sparse r-by-n matrices. As expected, we observe that, for n
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(a) n = 5r. (b) n = 10r.
Fig. 1. Number of times, over 20 trials, the SSC for r-by-n matrices whose
columns are k-sparse satisfied the SSC.

larger (n = 10r), more matrices satisfy the SSC. In fact, for
n = 5r, many matrices do not satisfy the SSC, even when k
is small, because n is not sufficiently large. In summary, as n
increases, the phase transition, that is, the largest value of k
that allows the SSC to be satisfied becomes larger.

Tables I and II report, for n = 5r and n = 10r respectively,
the average computational time, the number of instances that
reached the 5-minute time limit, and the number of times the
NC-SSC was satisfied but not the SSC. We observe that:

• It is harder for Gurobi to check the SSC close to the
phase transition; this explains why the computational cost
increases and then decreased as k increases.

• For r ≤ 10, the time is at most 6.3 seconds.
• For n = 5r, the time limit is often reached for r = 20

and 4 ≤ k ≤ 10. For n = 10r, it happens for r = 15 and
k = 8, 10, and for r = 20 and 4 ≤ k ≤ 14.

• Close to the phase transition, it happens more often
that the SSC is not satisfied while the NC-SSC is. This
happens for example 7 times out of 20 for n = 5r,
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TABLE I
CHECKING THE SSC FOR r-BY-5r MATRICES WHOSE COLUMNS ARE
k-SPARSE. THE TABLE REPORTS, OVER 20 TRIALS, THE AVERAGE

COMPUTATIONAL TIME IN SECONDS, AND, IF THEY ARE NON-ZEROS, THE
NUMBER OF TIMES THE 5-MINUTE TIME LIMIT WAS REACHED, AND THE

NUMBER OF TIMES THE NC-SSC WAS SATISFIED BUT NOT THE SSC.

r/k 1 2 3 4 6 8
3 0.0 0.0, 0, 2 / / / /
4 0.0 0.0, 0, 1 0.0, 0, 1 / / /
5 0.0 0.0, 0, 1 0.1, 0, 4 0.0 / /
6 0.0 0.1 0.1, 0, 4 0.0, 0, 3 / /
7 0.0 0.1 0.3, 0, 1 0.0, 0, 2 0.0 /
8 0.1 0.1, 0, 2 0.3, 0, 4 0.3, 0, 7 0.0 /
9 0.0 0.2, 0, 3 0.4, 0, 2 0.4, 0, 7 0.0 0.0

10 0.1 0.2, 0, 2 0.9, 0, 3 1.1, 0, 4 0.0, 0, 1 0.0
15 0.1 1.1, 0, 3 7.1, 0, 1 280 117, 0, 4 30, 2, 2
20 0.2 3.0, 0, 1 72, 0, 1 271, 18 271, 18, 2 240, 16, 4

TABLE II
CHECKING THE SSC FOR k-SPARSE r-BY-10r MATRICES.

r/k 1 2 3 4 6 8 10
3 0.0 0.1 / / / / /
4 0.0 0.1 0.1, 0, 1 / / / /
5 0.0 0.2 0.2 0.1, 0, 2 / / /
6 0.0 0.3 0.4 0.5, 0, 1 / / /
7 0.0 0.3 0.5 0.7 0.0 / /
8 0.1 0.4 0.7 1.1 1.2 / /
9 0.0 0.4 1.0 1.7 3.5 0.0 /

10 0.1 0.6 1.6 2.5 6.3 0.7, 0, 1 /
15 0.1 1.7 5.8 26 127 301, 20 271, 18
20 0.2 3.2 31 293, 16 301, 20 300, 20 300, 20

r = 8, 9 and k = 4. However, this does not happen often
when n = 10r: only 5 times over all the cases.

One may be a bit disappointed by the fact that Gurobi
reaches the time limit on these medium-scale problems. How-
ever, in practice, typically r and k are small. For example,

• in hyperspecral imaging, n is the number of pixels in
the images (typically larger than 10000), r is the number
of materials present in the image (typically smaller than
10), and k is the number of materials present in the pixels
(typically smaller than 3).

• in topic modeling, n is the number of documents (typ-
ically larger than 1000), r is the number of topics
discussed in these documents (typically smaller than 30),
and k is the number of topics discussed by the documents
present each pixel (a few).

In these real-world scenarios, because r and k are small, it
is likely that Gurobi can check the SSC within a reasonable
amount of time. This is illustrated in the paper on hyper-
spectral images; see https://arxiv.org/abs/2402.06019 for more
details with the abundance maps for the hyperspectral images.


